Lee, Ki-Bum


KiBum Lee

Phone: 848-445-2081

E-mail: E-mail

FAX: 732-445-5312

Office: Wright Rieman Labs 315

Mail: Chemistry & Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854


Education Links
  • B.S. 1998, Kyung Hee University (Seoul, Korea)
  • M.S. 2000, KAIST (Taejon, Korea)
  • Ph.D. 2004, Northwestern University (Evanston, IL)
  • Postdoctoral Research Fellow 2004-2007, The Scrrips Research Institute


CaptionThe primary research interest of our group is to develop and integrate nanotechnology and chemical biology to modulate signaling pathways in cancer and stem cells. More specifically, our research focuses on identifying the various microenvironmental cues (e.g. soluble signals, cell-cell interactions, and insoluble/physical signals) affecting stem cell and cancer cell fate and thereafter utilizing these cues for the neuro-differentiation of stem cells and apoptosis of brain tumor cells. Our group is creating new tools to better understand the roles of individual microenvironmental cues in cancer and stem cell behaviors. We are also developing novel platforms to deliver biomolecules and to control the signaling elements inside cells in a spatiotemporally controlled manner. Taken together, our work helps to lay the groundwork for the rational step-by-step emulation of cellular microenvironments using nanomaterials. We are also working towards the novel design of several nanomaterials and 3D-ECM platforms which can be responsive to external signals (e.g. light, pH, and enzymes), while leveraging our expertise to expand into several new directions. Among its nearly 15 members, our group spans many disciplines—organic, inorganic, and physical chemistry; pharmaceutical sciences; chemical and biomedical engineering; and molecular and stem cell biology.



DEVELOPMENT OF NOVEL APPROACHES TO PROBE BIOMOLECULAR INTERACTIONS OF CELLS IN VITROThe elucidation and regulation of molecular interaction mechanisms through which biomolecules (e.g. proteins, peptides, synthetic small molecules, and siRNA etc.) bind to their targets in specific signaling cascades is crucial to the advancement of cell biology. For this purpose, our first research project focuses on two novel methods in bionanotechnology and cell biology: (i) synthesizing multifunctional nanocomposites (Figure 2.) and modifying their surface with biomolecules (e.g. signaling molecules and siRNA etc.) for investigating biomolecular interactions within cellular compartments and (ii) generating combinatorial biomolecular nanoarrays and analytical tools to allow scientists to study and deliberately control interactions at the subcellular and single molecule levels. Nanostructures and nanomaterials intrinsically can interact with biological systems at a fundamental, molecular level with high specificity and selectivity. The key question is how can we take advantage of those unique molecular properties in orderto detect biomolecular interactions and dissect cellular signaling pathways at the single molecular level. In order to address these challenges, I propose to develop and integrate nanotechnologies to generate novel methodology platforms for identifying and regulating subcellular interactions.




CaptionThe search for novel ways to explore and understand the functions of insoluble/physical cues on the behaviors of stem cells is vital in the areas of regenerative medicine, as these microenvironmental signals significantly affect the behaviors of cells, including stem cell adhesion, growth, migration, and differentiation. Several approaches have been examined over the past few years to comprehend these phenomena, and one of these approaches is the micro or nano-scale assembly of ECM proteins like laminin and fibronectin. This project area focuses on achieving two main goals: One is to develop bio-surface chemistry methods to generate combinatorial arrays of microenvironmental molecules. The other is to utilize the platform to understand the temporal/spatial effects of the microenvironmental cues on growth, migration and differentiation of stem cells. Particularly, our group’s major research is focused on the lineage-specific differentiation of neural stem cells (NSCs) using combinatorial arrays of various microcuenvironmental cues. The implications of the results from this project could be potentially significant for tissue engineering for brain and spinal cord injuries, where NSCs or NSC-based differentiated cells can be transplanted into the damaged regions using scaffolds.





CaptionMicrofluidic devices offer a robust analytical approach, allowing for rapid analysis of cell assays in a parallel manner to investigate complex cell behaviors. Microfluidic devices have many advantages over a macroscopic setting, including reduced sample/reagent volume, high surface-to-volume ratios, an improved control of the physical/chemical microenvironments, and high throughput/automatic capabilities. Our group is using these microfluidic devices for elucidating complex cellular dynamics (e.g. stem cell differentiation and cancer cell apoptosis) and for advancing tissue engineering. This technology will be utilized to achieve a better understanding of how microenvironmental cues and intrinsic regulators control stem cell behaviors such as differentiation and migration at the single cell level.



CaptionDetecting biomolecular interactions where biomolecules (e.g. proteins, peptides, small molecules, and oligonucleotides etc.) bind to their targets in specific signaling cascades is crucial to the advancement of cancer and stem cell biology. To this end, we have developed hybrid nanomaterial-based biosensing systems; and utilized the developed nanomaterial-based biosensors to detect bioanalytes from cancer and stem cells in a highly sensitive and selective way. In particular, we have integrated graphene nanomaterials to field-effect transistor (FET)-based biosensors, which have recently attracted much interest owing to several unique advantages over nanomaterial-based biosensors, including higher 2-D electrical conductivity, excellent mechanical flexibility, larger surface area, and high chemical and thermal stability.





  • NIH Director’s New Innovator Award (2009~2014)
  • Burroughs Wellcome Fund Collaborative Research Grant (2014~2015)
  • Early Career Investigator Travel Fellowship, Nanotechnologies in Cancer at Memorial Sloan-Kettering Cancer Center (2013)
  • Bush Biomedical Grant Award (2013~2014)
  • New Jersey Spinal Cord Exploratory Research Award (2013~2015)
  • Board of Trustees Research Award for Scholarly Excellence (2013)
  • Faculty Research Award, Rutgers University (2012~2013)
  • Johnson and Johnson Proof-of-Concept Award (2011~2012)
  • New Jersey Spinal Cord Research Award (2009~2013)
  • Grant Proposal Development Award, Rutgers University (2008)
  • CIRM (California Institute for Regenerative Medicine) Post-doctoral Fellowship (2006~2007)
  • NSEC (Nanoscale Science and Engineering Center) Outstanding Research Award, Northwestern University (2004)
  • MRS (Materials Research Society) Graduate Student Award (2003) Korean-American Scholarship (2003)
  • L. Carroll King Award for Excellence Chemistry Teaching, Northwestern University (2001)
  • University Presidential Fellowship, Northwestern University (2001)
  • Honor scholarship, Kyung Hee University (95-97)
  • NSEC Board of Student Advisors (2000-2004)



  1. Lai, J.; Yu, A.; Yang, L.; Zhang, Y.; Shah, B.; Lee, K.-B.†, “Development of PhotoactivatedFluorescent N-Hydroxyoxindoles and Their Application for Cell-SelectiveImaging”, Chemistry – A European Journal, 2016, 22, 6361-6367
  2. Chueng, ST.D.; Yang, L.; Zhang, Y.; Lee, K.-B.†, “Multidimensional Nanomaterials for The Control of Stem Cell Fate”, Nano Convergence, 2016, DOI: 10.1186/s40580-016-0083-9
  3. Zhang, J.; Lee, K.-B.†; He, L.; Seiffert, J.; Subramaniam, P.; Yang, L.; Chen, S.; Maguire, P.; Mainelis, G.; Schwander, S.; Tetley, T.; Porter, A.; Ryan, M.; Shaffer, M.; Hu, S.; Gong, J.; Chung, K. F., “Effects of a Nanoceria Fuel Additive on The Physicochemical Properties of Diesel Exhaust Particles”, Environmental Science: Processes & Impacts, 2016, DOI: 10.1039/C6EM00337K
  4. Shah, S.; Solanki, A.; Lee, K.-B.†, “Nanotechnology-based Approaches for Guiding Neural Regeneration”, Accounts of Chemical Research, 2016, 49, 17-26.
  5. Kim, T.-H.*; Yea, C.-H.*; Chueng, ST.D.; Yin, P.T.; Coneley, B.; Dardir, K.; Pak, Y.; Jung, G.Y.; Choi, J.-W.†; Lee, K.-B.†, “Large-scale nanoelectrode arrays to monitor the dopaminergic differentiation of human neural stem cells”, Advanced Materials, 2015, 27, 6356-6362. Highlighted in (the Cover in Advanced Materials).
  6. Patel, S.; Chueng, ST.D.; Yin, P.T.; Dardir, K.; Song, Z; Pasquale, N; Kwan, K; Sugiyama, H.; Lee, K.-B.†, " Induction of stem cell-derived Functional Neurons via NanoScript-based Gene Repression", Angew. Chem. Int. Ed., 2015, 54, 1-7.
  7. Patel, S.; Yin, P.T.; Sugiyama, H.; Lee, K.-B.†, "Inducing Stem Cell Myogenesis using NanoScript ", ACS Nano, 2015, 9, 6909-6917. Highlighted worldwide by many science magazines/websites (>10) including ScienceDaily, ACS News, and Phys.org.
  8. Saleh, T.; Wojciech Jankowski, W.; Sriram, G.; Rossi, P.; Shah, S.; Lee, K.-B.; Cruz, L. A.; Rodriguez, A. J.; Birge, R. B. and Kalodimos, C. G., " Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway", Nature Chemical Biology, 2016, In press. 10.1038/nchembio.1981
  9. Yin, P.T.; Shah, S.; Pasquale, N.; Garbuzenko, O. B.; Minko, T.; Lee, K.-B.†, “Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer”, Biomaterials, 2016, 81, 46-57.
  10. Lai, J.; Shah, B.; Zhang, Y.; Yang, L.; Lee, K.-B.†, “Real-Time Monitoring of ATP-Responsive Drug Release using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles”, ACS Nano, 2015, 9, 5234-5245.
  11. Kim, T.; Shah, S.; Yang, L.; Yin, P.T.; Hossain, M.K.; Conley, B.; Choi, J.-W.†; Lee, K.-B.†, “Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays”, ACS Nano, 2015, 9, 3780-3790. Highlighted in Faculty of 1000Prime, 16 Apr 2015 TOP STORY in Mesenchymal Cell News 7.13 Apr 7
  12. Patel, S.; Pongkulapa, T.; Yin, P.T.; Pandian, G; Rathnam, C.; Bando, T.; Vaijayanthi, T.; Sugiyama, H.†; Lee, K.-B.†, “Integrating Epigenetic Modulators into NanoScript for Enhanced Chondrogenesis of Stem Cells”, J. Am. Chem. Soc., 2015, 137, 4598-4601.
  13. Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.-B.†, “Design, Synthesis, and Characterization of Graphene-Nanoparticle Hybrid Materials for Bio-applications”, Chemical Reviews, 2015, 115, 2483-2531. Highlighted in (the Cover in Chemical Reviews), Most Read Articles, Highlighted in (the Cover in Chemical Reviews)
  14. Shah, S.; Liu J.; Pasquale, N.; Lai, J; McGowan, H.; Pang, Z. P. †; Lee, K.-B.†, “Hybrid Upconversion Nanomaterials for Optogenetic Neuronal Control”, Nanoscale, 2015, 7, 16571-16577.
  15. Deibert, B. J.; Zhang, J.; Simth, P.; Chapman, K. W.; Rangan, S.; Banerjee, D.; Tan, K.; Wang, H.; Pasquale, N.; Chen, F.; Lee, K.-B.; Dismukes, G. C.; Chabal, Y. J.; Li, J., “Surface and Structural Investigation of MnOx Birnessite-type Water Oxidation Catalyst Formed under Photocatalytic Conditions”, Chem. Eur. J., 2015, 21, 1-12.
  16. Lai, J.; Zhang, Y.; Pasquale, N.; Lee, K.-B.†, "Upconversion Nanoparticle with Orthogonal Emissions using Dual NIR Excitations for Controlled Two-way Photoswitching", Angew. Chem. Int. Ed., 2014, 14419-14423.
  17. Yin, P.T.; Han, E.; Lee, K.-B.†, “Engineering Stem Cells for Biomedical Applications“, Advanced Healthcare Materials, 2015, In Press
  18. Patel, S..; Lee, K.-B.†, “Probing Stem Cell Behavior using Nanoparticle-based Approaches“,: WIREs Nanomedicine & Nanobiotechnology, 2015, In Press
  19. Yin, P. T., Kim, T.-H., Choi, J.-W.; Lee, K.-B.†, “High-Throughput Screening of Stem Cell Self-Renewal and Differentiation on Nanomaterials“, Stem-Cell Nanoengineering, 2015, DOI: 10.1002/9781118540640.ch19
  20. Patel, S.; Jung, D.; Yin, P. T.; Carlton, P.; Yamamoto, M.; Bando, T.; Sugiyama, H.; Lee, K.-B.†, " NanoScript: A nanoparticle-based artificial transcription factor for effective gene expression", ACS Nano, 2014, Article ASAP, DOI: 10.1021/nn501589f
  21. Shah, B. P.; Pasquale, N.; De, G.; Tan, T.; Ma, G.; Lee, K.-B.†, "Multifunctional Core-shell Nanoparticle-based Combined Hyperthermia and Peptide Delivery for Enhanced Cancer Cell Apoptosis", ACS Nano, 2014, Article ASAP, DOI: 10.1021/nn503431x
  22. Kim, T.-H.; Cho, H.-Y.; Lee, K.-B.; Kim, S.U.; Choi, J.-W.†, “Electrically-Controlled Delivery of Cargo into Single Human Neural Stem Cell“, ACS Applied Materials & Interfaces, 2014, Just Accepted Manuscript
  23. Yin, P.T.; Shah, B. P.; Lee, K.-B.†, "Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells" Small, 2014, DOI: 10.1002/smll.201400963
  24. Shah,S.*; Yin, P.T.; Uehara, T.M.; Chueng, S. –T.; Yang L.; Lee, K.-B.†, "Guiding Stem Cell Differentiation into Oligodendrocytes Using Graphene-Nanofiber Scaffold ", Advanced Materials, 2014, DOI: 10.1002/adma.201400523 Highlighted in (Inside Cover in Advanced Materials)
  25. Sarkar, S.; Zhang, L.; Subramaniam, P.; Lee, K.-B.; Garfunkel, E.; Ohman Strickland, P.A.; Mainelis, G.; Lioy, P. J.; Tetley, T.; Chung, K.F.; Zhang, J.; Schwander, S., "Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human Immune Cells", PLOS ONE, 2014, In Press
  26. Shah,S.*; Solanki A.*; Sasmal, P.; Lee, K.-B.†, "Single Vehicular Delivery of siRNA and Small Molecules to Control Stem Cell Differentiation ", J. Am. Chem. Soc., 2013, 135, 15682-15685.
  27. Kim, T.-H.; Lee, K.-B.; Choi, J.-W, " 3D Graphene Oxide-encapsulated Gold Nanostructure to Detect Neural Stem Cell Differentiation", Biomaterials, 2013, 34, 8660-8670.
  28. Solanki A.; Chueng, S. –T.; Yin, P.T.; Kappera, P.; Chhowalla, M.; Lee, K.-B.†, "Axonal Alignment and Enhanced Neuronal Differentiation of Neural Stem Cells on Graphene-Nanoparticle Hybrid Structures"; Advanced Materials, 2013, DOI: 10.1002/adma.201302219  Highlighted in (Frontispiece in Advanced Materials)
  29. Yin, P.T.; Kim, T.-H.; Choi, J. –W.; Lee, K.-B.†, "Prospects for graphene-nanoparticle-based hybrid sensors", Phys. Chem. Chem. Phys., 2013, 15, 12785-12799
  30. Shah, B. P.; Yin, P. T.; Lee, K.-B.†, "Multimodal magnetic core-shell nanoparticles for effective stem cell differentiation and imaging", Angew. Chem. Int. Ed., 2013, 52, 6190-195.
         Chosen as a "Hot Paper" by the Editors for its importance in a rapidly evolving field of high current interest.
  31. Yin, P.T.; Lee, K.-B.†, "Biomimetic toxin-absorbing nanosponge", Nanomedicine, 2013, 8, 871-873.
  32. Solanki A.; Shah,S.; Yin, P. T.; Lee, K.-B.†, "Nanotopography-mediated Reverse Uptake for siRNA Delivery into Neural Stem Cells to Enhance Neuronal Differentiation";, Scientific Reports, 2013, 3, 1553. (by Nature Publishing Group). DOI: 10.1038/srep01553
  33. Lai, J.; Shah, B. P.; Garfunkel, E.; Lee, K.-B.†, “Versatile Fluorescence Resonance Energy Transfer-Based Mesoporous Silica Nanoparticles for Real-Time Monitoring of Drug Release”, ACS Nano, 2013, 7, 2741-2750.
  34. Myung, S.; Kim, C.; Yin, P. T.; Park, J.; Solanki, A.; Reyes, P. I.; Yicheng, L.; Kim, K. S.; Lee, K.-B., "Label-free polypeptide-based enzyme detection using a graphene-nanoparticle hybrid sensor", Advanced Materials, 2012. In Press
  35. Subramaniam, P.; Lee, S.; Shah, S.; Patel, S.; Starovoytov. V.; Lee, K.-B., "Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery", Advanced Materials, 2012, 24, 4014-4019.
  36. Jung, D.; Minami, I.; Patel, S.; Lee, J.; Jiang, B.; Yuan, Q.; Li, L.; Kobayashi, S.; Chen, Y.; Lee, K.-B.; Norio Nakatsuji, N., "Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells", Journal of Nanobiotechnology, 2012, DOI:10.1186/1477-3155-10-23
  37. Myung, S.; Solanki, A.; Kim, C.; Park, J.; Kim, K. S.; Lee, K.-B., "Graphene-encapsulated Nanoparticle-based Biosensor for the Selective Detection of Cancer Biomarkers", Advanced Materials, 2011, 23, 2221–2225.
  38. Kim, C.; Shah, B. P.; Subramaniam, P.; Lee, K.-B., "Cooperative induction of brain tumor cell apoptosis by targeted co-delivery of siRNA and anticancer drugs", Molecular Pharmaceutics, 2011, 8, 1955-1961.
  39. Park, J. K.; Jung, J.; Subramaniam, P.; Shah, B.; Kim, C.; Lee, J. K.; Cho, C.; Lee, K.-B., "Graphite-Coated Magnetic Nanoparticles as Multimodal Imaging Probes and Cooperative Therapeutic Agents for Tumor Cells", Small, 2011, 7, 1647-1652. Highlighted in ACS Chemical & Engineering News (September 26, 2011 Volume 89, Number 39 pp. 29 – 32)
  40. Reyes, P. I.; Ku, C.-J.; Duan, Z.; Lu, Y. ; Solanki, A.; Lee, K.-B., "ZnO Thin Film Transistor Immunosensor with High Sensitivity and Selectivity", Applied Physics Letters, 2011, 98, 173702.
  41. Park, S. Y.; Choi, D. S.; Jin, H. J.; Park, J.; Byun, K.-E.; Lee, K.-B.; Hong, S. , "Polarization-controlled differentiation of human neural stem cells using synergistic cues of carbon nanotube network patterns", ACS Nano, 2011, 5, 4704-4711. Highlighted in Neural Cell News 5.19, May 18, 2011
  42. Baik, K. Y.; Park, S. Y.; Heo, K.; Lee, K.-B.; Hong, S. , "Carbon Nanotube Monolayer Cues for Osteogenesis of Mesenchymal Stem Cells", Small, 2011, 6, 741-745.
  43. Jung, J.; Solanki, A.; Memoli, K. A.; Kamei, K.-I.; Kim, H. ; Drahl, M. A.; Williams, L. J.; Tseng, H.-R.; Lee, K.-B.,"Selective inhibition of human brain tumor cell proliferation via multifunctional quantum dot-based siRNA delivery", Angew. Chem. Int. Ed. , 2010, 49, 103–107. Highlighted in Nanowerk, " Quantum dot based siRNA approach selectively inhibits brain cancer cells"
  44. Solanki A.; Shah, S.; Park, S. Y.; Hong, S; Lee, K.-B., "Controlling differentiation of neural stem cells using extracellular matrix protein patterns", Small, 2010, 6, 2509-2513. Highlighted in Frontispiece in Small 22/2010
  45. Solanki, A.; Lee, K.-B., "A Step Closer to Complete Chemical Reprogramming for Generating iPS Cells", ChemBioChem, 2010, 11, 755-757.
  46. Kamei, K.-I.; Ohashi, M.; Suh, J.; Ho, Q.; Yu, Z. T. F.; Tang, J.; Teitell, M. A.; Clark, A. T.; Pyle, A. D.; Lee, K.-B.; Witte, O. W.; Tseng, H.-R., "Microfluidic Image Cytometry for Quantitative Single-Cell Profiling of Human Pluripotent Stem Cells in Chemically Defined Conditions", Lab Chip, 2010, 10, 1113-1119.
  47. Sun, J.; Masterman, S. M.; Graham, N. A. ; Jiao, J. ; Mottahedeh, J.; Laks, D. R.; Ohashi, M.; DeJesus, J.; Kamei, K.-I.; Lee, K.-B.; Wang, H.; Yu, Z. T. F.; Lu, Y.-T.; Wang, S.; Hou, S.; Li, K.; Liu, M.; Zhang, N.; Angenieux, B.; Panosyan, E.; Samuels, E.; Park, J.; Williams, D.; Konkankit, V.; Nathanson, D.; van Dam, R. M.; Phelps, M. E.; Wu, H.; Liau, L. M.; Mischel, P. S.; Lazareff, J. A.; Kornblum, H.; Yong, W. H.; Graeber, T. G. and H.-R. Tseng, "A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens", Cancer Research, 2010, 70 (15), 6128-6138.
  48. Brill, L. M.*; Xing W.*; Lee, K.-B.*; Ficarro, S.B.; Xu, Y.; Terskikh, A., Snyder E. Y.; Ding, S., "Phosphoproteomic Analysis of Human Embryonic Stem Cells", Cell Stem Cell 2009, 5, 204-213. (* Equal First Authors.) Highlighted "Unraveling the Human Embryonic Stem Cell Phosphoproteome", Cell Stem Cell 2009, 5, 126-127. Highlighted in Faculty of 1000 Biology, 29 Sep 2009
  49. Kamei, K.-I.; Yu, Z. T. F.; Guo, S.; Takahashi, H.; Gschweng, E.; Wang, X.; Suh, C.; Tang, J.; Witte, O. W. ; Lee, K.-B.; Tseng, H.-R. , "An integrated microfluidic device for quantitative assay of human embryonic stem cells", Lab Chip, 2009, 9, 555-563.
  50. Yu, Z. T. F.; Kamei, K.-I.; Shu, C. J.; He, G. W.; Silverman, R.; Radu, C. G.; Witte, O. W. ; Lee, K.-B.; Tseng, H.-R. , "Integrated microfluidic devices for combinatorial cell-based assays", Biomedical Microdevices, 2009, 11, 547- 555.
  51. Solanki, A.; Kim, J. D.; Lee, K.-B., "Nanotechnology for Regenerative Medicine: nanomaterials for stem cell imaging", Nanomedicine, 2008, 3, 567-578.
  52. Lee, K.-B.; Solanki, A.; Kim, J. D.; Jung J., "Nanomedicine: dynamic integration of nanotechnology with biomedical science", Zhang, M., Editors, World Scientific, 2008.
  53. Solanki, A.; Shah, S.; Koucky, M.; Lee, K.-B., "Nanomaterials for stem cell imaging in neuroscience", Preedy, V. R., Editors, CRC Press, 2011. (Invited Book Chapter)
  54. Solanki, A.; Shah, S.; Lee, K.-B., "A Nanotopography-mediated Reverse Uptake Platform for siRNA Delivery into neural stem cells", Submitted to Nature Nanotechnology(1st revision), 2012.
  55. Shah, B. P.; Ghoshal, S.; Lee, K.-B., "Magnetic field-facilitated delivery of genetic materials to control neural stem cell fate using novel magnetic core-shell nanoparticles", Submitted to Angew. Chem. Int. Ed. , 2012.


(Before Independent Position)

  1. Oh, B.-K; Park, S.; Millstone, J. E.; Lee, S. W.; Lee, K.-B.; Mirkin, C. A., "Separation of Tricomponent Protein Mixtures with Triblock Nanorods”, J. Am. Chem. Soc. , 2006, 128, 11825-11829.
  2. Lee, K. -B.; Kim, E. -Y.; Wolinsky, S. M.; Mirkin, C. A., "The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus in plasma", Nano Letters, 2004, 4, 1869-1872. See also "Nanoarrays for ultrasensitive biodetection", NanoToday, 9 (Dec. 2004).
  3. Lee, K. -B.; Park, S.; Mirkin, C. A., "Multicomponent Magnetic Nanorods for Biomolecular Separations", Angew. Chem. Int. Ed., 2004, 43, 3048-3050.
  4. Zhang, Y.; Salaita, K.; Lim, J -H.; Lee, K. -B.; Mirkin, C. A., "A Massively Parallel Electrochemical Approach to the Miniaturization of Organic Micro- and Nanostructures on Surfaces", Langmuir, 2004, 20, 962-968.
  5. Nam, J. -M.; Han, S. W.; Lee, K. -B.; Liu, X.; Mirkin, C. A., "Bioactive Protein Nanoarrays on Nickel Oxide Surfaces Formed by Dip-Pen Nanolithography ", Angew. Chem. Int. Ed., 2004, 43, 2146-1249.
  6. Zhang, H.; Lee, K. -B.; Li, Z.; Mirkin, C. A., "Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography", Nanotechnology, 2003, 14, 1113–1117.
  7. Smith, J. C. *; Lee, K. -B.*; Wang, Q. *; Finn, M. G.; Johnson, J. E.; Mrksich, M.; Mirkin, C. A., "Nanopatterning the Chemospecific Immobilization of Cowpea Mosaic Virus Capsid", Nano Letters, 2003, 3, 883-886. (* These authors contributed equally to this work.)
  8. Lim, J. -H.; Ginger, D.; Lee, K. -B.; Heo, J.; Nam, J. -M.; Mirkin, C. A., "Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces" Angew. Chem. Int. Ed., 2003, 20, 2411-2414.
  9. Lee, K. -B.; Lim, J. -H.; Mirkin, C. A., "Protein Nanostructures Formed Via Direct-Write Dip-Pen Nanolithography", J. Am. Chem. Soc., 2003, 125, 5588-5589. See also one of "Most Intriguing" documents for 2Q2003 by CAS scientists
  10. Lee, K. -B.; Park, S. -J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M., "Protein Nanoarrays Generated by Dip-Pen Nanolithography", Science, 2002, 295, 1702-1705.
    See also "Technique makes protein arrays", C&EN News 80, 6 (Feb. 11, 2002).
    See also "Protein nanoarrays", Materials Today, 12 (Jun. 2002).
    See also Chemistry Highlights 2003, C&EN News 80, 46 (December 16, 2002).
  11. Ivanisevic, A.; Im, J.-H.;Lee, K. -B.; Park, S.-J.; Demers, L. M.; Watson, K. J.; Mirkin, C. A., "Redox-Controlled Orthogonal Assembly of Charged Nanostructures", J. Am. Chem. Soc.,2001,123, 12424-12425.

Research Area(s): 
Analytical Chemistry
Biophysical Chemistry
Materials Chemistry
Organic Chemistry