DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery
Hang Xing¹,³, Ngo Yin Wong²,³, Yu Xiang¹,³ and Yi Lu¹,²,³

Addresses
¹ Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
² Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
³ Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Corresponding author: Lu, Yi (yi-lu@illinois.edu)

Current Opinion in Chemical Biology 2012, 16:429–435
This review comes from a themed issue on Analytical techniques
Edited by Shana O Kelley and Petra S Dittrich
For a complete overview see the Issue and the Editorial
Available online 26th April 2012
1367-5931/S – see front matter, © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cbpa.2012.03.016

Introduction
Recent advance in studying inter-cellular and intra-cellular biochemical processes have made important contributions to our understanding of biology in the past several decades. Such fundamental advancement also has significant impact on cell imaging and drug delivery. Technologies such as fluorescent resonant energy transfer (FRET), single molecular imaging, and gene regulation have allowed unparalleled insights into cellular functions and mechanisms in drug delivery. An exciting development in this area is the combination of unique optical or magnetic properties of nanomaterials with high selectivity of DNA/RNA aptamers. Together these aptamer-functionalized nanomaterials have enabled novel analytical techniques that advance our understanding and treatment of disease, aging, and cancer [1–3]. This review highlights recent work on using DNA aptamer–nanomaterial hybrid platforms for applications in cellular analysis, imaging and targeted drug delivery (Figure 1).

Overview of nanomaterials and aptamers
Nanomaterials for cellular applications
Metal nanoparticles have been used widely for the studies of cellular uptake and analysis owing to their simple synthesis, facile modifications, and biocompatibility. For applications in cellular analysis, gold and silver nanoparticles have been especially common owing to their excellent plasmonic properties, which have enabled significant advances in localized surface plasmon resonance (LSPR) for applications such as surface enhanced Raman spectroscopy [4]. When in close proximity to the surface of a plasmonic metal, the Raman signal can achieve 10^{14} enhancements, owing to electromagnetic enhancements from plasmonic ‘hot spots’. Nanoparticles [5], nanoshells [6], nanoflowers [7], nanorods [8], and many other nanostructures [9] have all recently been explored for their plasmonic properties in cell imaging, uptake mechanisms, and detection of various analytes [10]. The reader is directed to other recent reviews that focus on SERS/plasmonic applications of nanoparticles for cellular analysis [11*].

Other types of nanomaterials such as silica nanoparticles, quantum dots (QDs), and carbon based nanomaterials have also been applied in cellular applications [12–14]. Nanosized silica is widely known for excellent compatibility and has been used extensively in cellular studies [15]. More recently, mesoporous structures dramatically increased the surface area of silica nanoparticles and enabled high loading of cargo for cellular imaging and delivery [16]. Another material of interests is semiconducting QDs. Because of their fluorescence stability, board absorption, and narrow emission band, they are uniquely suited for high resolution [17*] and multiplex imaging of cells [18]. Carbon based nanomaterials such as carbon nanotubes, fullerenes, and most recently graphene and graphene oxide are also promising nanomaterials for cellular applications, including the use of stabilized graphene oxide in cellular imaging and drug delivery [19–21].

Aptamers
The above nanomaterials are promising in cellular applications as efficient reporters and carriers. However, the applications of non-functionalized nanomaterials have remained scarce owing to limited functionality, lack of target specificity, and low intracellular stability. Aptamers are short single stranded DNA or RNA sequences that are selected and refined for highly specific binding to a target of interest by in vitro selection or systematic evolution of ligands by exponential enrichment (SELEX) [22–24]. In the past two decades, the technology has evolved quickly and has since found particular interest in environmental sensing, cancer imaging/diagnosis, and disease therapy [25–32]. Owing to their automated synthesis, high stability, and well established selection process, DNA aptamers have become one of the most promising techniques for introducing target specificity to nanomaterials for intracellular imaging, diagnosis, and therapy [33*,34].
Aptamer-functionalized nanomaterials for analysis of intracellular components and metabolites

Nanomaterials with good cell uptake, such as gold and carbon-based nanocomposites, can be modified by aptamers for the analysis of intracellular components and metabolites.

AuNP–aptamer hybrid

Gold nanoparticles (AuNPs) are the most characterized nanomaterials for intracellular analysis. AuNPs exhibit high stability, good biocompatibility, excellent optical and electronic properties, and diverse surface functionalizations. In addition to cellular applications shown below, aptamer-modified AuNPs have also been extensively applied for detecting metal ion and biomolecular targets [35,36].

Mirkin and co-workers developed an aptamer–AuNP hybrid with fluorescent reporters, termed as ‘nanoflare’, which can quantitatively detect analytes inside living cells [37**]. The aptamer modified nanoflares are highly stable, readily taken by cells, and were used to detect intracellular ATP concentrations at 1–2 mM (Figure 2) [38]. Similar methodology has been applied to detect gene expression and message RNA in living cells by using antisense DNA strand or molecular beacon constructs [39,40].

SWCNTs and graphene

Carbon-based materials, such as single-walled carbon nanotubes (SWCNTs) and graphene have attracted considerable interest owing to their high surface area, mechanical strength, high electrical conductivity, and photoluminescence. These unique properties offer SWCNTs and graphene good opportunities for biosensing and bioimaging applications. For example, DNA strands can be adsorbed onto SWCNT/graphene through strong π-π-stacking interactions and released through hybridization or structure switching [41]. By taking advantage of the high quenching efficiency of carbon structures, Cha et al. was able to develop an intracellular insulin sensor with wide detection range from 10 μM to 2 mM [42].

Graphene derivatives featuring excellent optical and electrical properties recently emerged as another promising carbon-based nanomaterial for in situ analysis of small molecules in living cells. For example, Wang et al. reported the usage of graphene oxide nanosheet as quenchers for aptamer-based intracellular APT detection [43**]. They synthesized a complex with carboxy-fluorescein (FAM) modified ATP aptamer strands absorbed on graphene oxide nanosheets (GO-nS), resulting in significant quenching of fluorescent. They further demonstrated the effective uptake of aptamer–FAM/GO-nS nanocomplex into JB6 cells and fluorescence recovery after adding ATP molecules (Figure 3). They reported in situ intracellular ATP detection with a detection limit as low as 10 μM.

Aptamer-functionalized nanomaterials for cell-specific imaging and drug delivery

In addition to intracellular analysis, another exciting application of aptamer functionalized nanomaterials is toward cancer cell imaging and targeted drug delivery.

Cancer cell targeting and imaging

Aptamers, as molecular probes with high specificity and selectivity, can readily distinguish between cancerous and healthy cells at molecular level. The combination of aptamers with nanomaterials as signal reporting groups therefore represents a powerful diagnostic tool for the detection of cancer and diseases in early stage.

Yin et al. reported a one-step method for the synthesis of DNA-aptamer templated fluorescent silver nanoclusters (AgNCs) [44]. The Sgc8c aptamer strands were immobilized onto AgNCs through cytosine-rich sequence, and the resulting Sgc8c-modified AgNCs showed specific targeting and fluorescent labeling capabilities to CCRF-CEM cancer cell over control cells. In addition to the fluorescence properties, the tunable LSPR properties of AgNCs were also utilized for cellular imaging. Chen et al. reported that the prion protein (PrP*) aptamer modified AgNPs could be used as targeted contrast imaging agents for both dark-field light scattering and TEM imaging of SK-N-SH cells. They further observed that PrP*–AgNPs could be internalized into plasma membrane, lysosome and endocytic structure through aptamer-mediated endocytosis [45].

Aptamer modified AgNPs were also used to specifically target and image the subcompartments of live cells.

Figure 1

A general illustration of the three cellular analysis and therapeutic applications of aptamer-functionalized nanoparticles.
2011, Sun et al. reported that by artificially adding tandem cytosines Sgc8c aptamer, they were able to generate an Ag cluster that targeted the nucleus of CCRP-CEM cells [46].

Kim and co-workers reported a cancer-specific multimodal imaging probe consisting of cobalt–ferrite nanoparticle protected by a silica shell and coated by fluorescent rhodamine. They demonstrated that the DNA aptamer functionalized nanomaterials for intracellular analysis Xing et al. 431

Figure 2

(a) Schematic view of the basic design and stimuli-responsive mechanism of aptamer nano-flare. (b) Fluorescence microscopy images of HeLa cells incubated with aptamer nano-flares and control particles. (c) Flow cytometry results of fluorescent intensity (Cy5) of cells treated with aptamer nano-flares and control particles. Adapted from [38].

Figure 3

(a) Schematic illustration of in situ molecular probing in living cells by using aptamer/GO-nS nanocomplex. (b) JB6 cells specific uptake of ATP aptamer-FAM/GO-nS samples (b) and random DNA-FAM/GO-nS samples (c). Images were taken under differential interference contrast and wide-field fluorescence. Adapted from [43**].
AS1411 aptamer–multimodal nanoparticle system not only enabled the targeted fluorescence imaging of nucleolin-expressing C6 cells, but also allowed radionuclide and MRI imaging in vivo and in vitro [47]. In addition, Medley et al. combined fluorophore-doped silica and silica-coated magnetic nanoparticles modified with highly selective aptamers to detect and extract CCRF-CEM targeted cells in a variety of mixtures [48]. They also systematically studied the effect of nanoparticle size, conjugation chemistry, and aptamer sequences on the selectivity and sensitivity of the dual-particle assays.

Besides aptamer modified metal and silica nanoparticles, an extracellular supramolecular reticular DNA-QD sheath was reported by Zhang and co-workers for high-intensity fluorescence imaging [49]. At physiological temperature, the DNA-QD sheath readily recognized and bound to Ramos cells in a cell-specific manner, and was used to accurately quantify the Ramos cells within the range of 10–1000 cells. In addition, electrochemical sensors [50] and electrochemiluminescence methods [51] have also been reported for aptamer-QDs based cancer cell detection.

Cell-specific drug delivery

Compared to conventional passive anticancer drug delivery system, targeted delivery delivers therapy more efficiently and with fewer side effects and can be achieved by disease-specific recognition of tumor cells. Aptamer-functionalized nanoparticles have also been widely used for cancer cell specific drug delivery.

In 2011, Gao et al. reported the application of thrombin aptamer-functionalized TBA-tethered lipid-coated mesoporous silica nanoparticles (TBA-lipid-MSN) and demonstrated effective recognition of thrombin and suppression of Hela cell growth by extracellularly disturbing PAR-1 receptor signaling. Moreover, the efficient delivery of anticancer drug Dtxl also contributed to the effective cytotoxicity in the cytoplasm [52].

In collaboration with Wong and Cheng groups, our group recently reported cell-specific drug delivery system based on aptamer modified liposomes. Liposomes encapsulated with anticancer drug cisplatin were conjugated with AS1411 DNA aptamers that specifically bound to nucleolin overexpressed on the cancer cell membrane. We demonstrated that the aptamer–liposomes–cisplatin composite could be delivered into the target MCF-7 cancer cells but not into LNCaP cells as control. Moreover, the release of cisplatin was successfully controlled by introducing a complementary DNA strand of the aptamer as an antidote [53]. Another type of biological vesicle, micelle, was also reported for aptamer-mediated targeted drug delivery by Wu et al., and the TDOS aptamer modified micelle was found to exhibit specificity to Ramos cells [54].

Aptamer-modified polymer nanoparticle is also a promising delivery system. For example, Guo et al. conjugated DNA aptamers to a PEG-PLGA nanoparticle as a novel drug delivery system capable of targeting cancer cells and endothelia in angiogenic blood vessels [55]. In the tested C6 glioma cells, aptamer-nucleolin specific binding resulted in the cellular association of nanoparticles and thereby enhanced the cytotoxicity of the paclitaxel (PTX) delivery. They suggested the potential of utilizing Ap-PTX-NP as therapeutic drug delivery platform for gliomas treatment [55].

Moreover, novel nanostructures have also been explored as potential targeted drug delivery systems. Huang and co-workers reported using 3D DNA icosahedral as a carrier for doxorubicin. MUC1 aptamers were conjugated to distinct five-point-star and six-point-star motifs through DNA hybridization before the formation of DNA polyhedra. They demonstrated that aptamer-conjugated doxorubicin-intercalated DNA icosahedra showed a specific and efficient therapeutic effect for epithelial cancer cells [56] (Figure 4).

Perspective

The emerging demand for more in-depth study of cellular mechanism and therapy has emphasized the importance of methodologies for cellular analysis and delivery. The recent development of nanotechnology has brought about many nanomaterials as signal reporters and delivery carriers that are more efficient than classic materials for cellular applications. Along with the advantages of nanomaterials, the functionalization of nucleic acid aptamers as recognizing and targeting molecules onto these nanomaterials has successfully realized highly selective and efficient cellular analysis, imaging and targeted delivery. Within the past two years, a number of works shown above have revealed the promise of aptamer-functionalized nanomaterials in cellular analysis and delivery. These nanoconjugates will continuously play more and more important roles in cellular and many other applications.

Future exploration of other new nanomaterials with better cellular compatibility, optical property, and delivery efficiency is anticipated to advance this research field even further. Silica-based nanoparticles, quantum dots and mesoporous nanomaterials have been found to exhibit excellent biocompatibility, optical property and drug load, respectively. The combination of these materials into hybrid nanomaterials can yield ideal nanocomposites with all the desired properties. In addition, nanomaterials with multiple functions and controlled spatial distributions, such as Janus nanoparticles, can further expand their functions and cooperativity for potential cellular application [57,58].

In addition, the selection and evolution of new nucleic acid aptamers for more cellular targets are the basis to
extend the applications of aptamer-functionalized nanomaterials in cellular analysis and delivery for studying more types of cells and their cellular processes. Beside in vitro selection from random nucleic acid pools, the introduction of unnatural nucleotides into the nucleic acid pools to improve the diversity of functional groups may further enhance the chance to obtain aptamers for more cellular targets [59].

Finally, to make even bigger impact on human health, the advance of these studies in cells needs to be translated into analysis, imaging and targeted delivery in animals or even human clinical trials. To achieve the goals, even more selective aptamer, more effective nanomaterials and better combination of the two are required and the safety of these nanomaterials in vivo needs to be carefully evaluated.

Acknowledgements

We thank the US National Institute of Health (ES016865) and the National Science Foundation (DMR-0117792, CTS-0120978 and DMI-0328162) for financial support.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

18. A review about recent advances of using semiconductor quantum dot probes for monitoring the behavior of single molecules in living cells.

35. A comprehensive review on three different types of functional nucleic acid sensors: nucleic acid enzyme, aptamer, and aptazyme-based sensors.

40. First demonstration of using oligonucleotide-modified gold nanoparticle as transfection, recognition and signaling agents for detecting mRNA in living cells.

47. First demonstration of aptamer-graphene oxide complex for detection of DNA and proteins in living cells.

Detailed discussion of the factors affecting the conjugation of aptamers to nanoparticles, including particle size, coupling chemistry, and aptamer sequences.

Fabrication of the dendrimer/quantum dot nanocluster and the usage of it as an electrochemiluminescence probe for versatile assays of cancer cells.

Demonstration of targeted delivery of cisplatin to MCF-7 breast cancer cells through nucleolin aptamer functionalized liposomes. A complementary DNA of the aptamer was used as an antibody.

A novel aptamer obtained from in vitro selection combined with micelle was found to exhibit specificity to Ramos cells.

Demonstration of aptamer-conjugated 3D DNA icosahedra for doxorubicin encapsulation and specific intracellular delivery to epithelial cancer cells.

