Chemistry 01:160:480, Chemistry 16:160:580
Structural Biology, Structural Biophysics, and Chemical Biology of Transcription

Instructor

Richard H. Ebright
Board of Governors Professor of Chemistry and Chemical Biology, Rutgers University
ebright@waksman.rutgers.edu

Location and Time

Waksman Institute 311, Tuesday/Thursday, 6:40-8:10 PM

Course Description

Transcription is the synthesis of RNA using a DNA template. Transcription is the first step in gene expression, is the primary regulated step in gene expression, and is the target of two classes of currently used antibacterial therapeutic agents. Transcription is carried out by megadalton-scale, nanometer-scale molecular machines: RNA polymerase, complexes of RNA polymerase with one or more initiation factor, and complexes of RNA polymerase with one or more elongation factor. Transcription involves three stages: initiation, in which RNA polymerase binds to DNA and begins synthesis of an RNA molecule; elongation, in which RNA polymerase translocates along DNA as a molecular motor and extends the RNA molecule; and termination, in which RNA polymerase stops moving, stops RNA synthesis, releases the DNA molecule, and dissociates for DNA. Transcriptional regulation results in differences in gene expression in different cell types, developmental states, and environmental conditions. Transcriptional regulation occurs at each of these three stages of transcription: initiation, elongation, and termination. The course will present the identities, structures, mechanisms of the molecular machines that carry out transcription and then will present the molecular components and molecular strategies by which transcriptional regulation occurs.

The course will focus primarily on transcription and transcriptional regulation in bacteria, since transcription and transcriptional regulation in bacteria are better understood than--and are paradigmatic of--transcription and transcriptional regulation in higher organisms. Relationships between processes in bacteria and processes in higher organisms will be highlighted.

The course will focus primarily on structure and mechanism. Concepts of structural biology, structural biophysics, and chemical biology will be emphasized.

Protein-DNA interactions and protein-protein interactions will be major themes. The use of thermal energy, binding energy, and chemical energy to generate force, drive conformational changes, and power movement will be additional major themes.

The first half of the course will consist of lectures on transcription and transcriptional regulation. The second half of the course will consist of seminar presentations on research papers ("case studies") that provide the foundation for our understanding of transcription and transcriptional regulation and that exemplify use of x-ray crystallography, electron microscopy, chemical crosslinking, fluorescence resonance energy transfer, single-molecule fluorescence resonance energy transfer, magnetic tweezers, and optical-tweezers approaches to analyze structures and define structural transitions.
Course Description for Catalog

Chemistry 01:160:480, Chemistry 16:160:580
Structural Biology, Structural Biophysics, and Chemical Biology of Transcription (3)
Transcription and transcriptional regulation. Structures and mechanisms of RNA polymerase, initiation factors, elongation factors, activators, repressors, promoters, and terminators. Protein-DNA interactions, protein-protein interactions, and use of energy to drive conformational changes and translocation. Emphasis on RNA polymerase as a molecular machine. Primary focus on bacterial RNA polymerase. Lectures in first half of course. Seminars on primary research papers ("case studies") in second half of course.

Course Objectives

The course will provide a comprehensive understanding of transcription and transcriptional regulation.

The course will provide a thorough introduction to protein-DNA interaction and protein-protein interaction.

Through the intensive study of a representative, paradigmatic molecular machine, the course will provide an introduction to the mechanisms by which molecular machines use thermal energy, binding energy, and chemical energy to generate force, drive conformational changes, and power movement.

The course will provide exposure to modern research tools of structural biology, structural biophysics, and chemical biology, including x-ray crystallography, electron microscopy, chemical crosslinking, fluorescence resonance energy transfer, single-molecule fluorescence resonance energy transfer, single-molecule nanomanipulation with magnetic tweezers, single-molecule nanomanipulation with optical-tweezers, site-specific labelling of proteins, site-specific labelling of nucleic acids, analysis of protein-DNA interactions, and analysis of protein-protein interactions.

The second half of the course will provide training in reading, critically assessing, and presenting and discussing the primary scientific literature.

Course Pre-Requisites/Co-Requisites

Special permission only

01:160:323-324, 01:160:327-328, 01:160:342, 11:115:409, 16:160:537, or equivalent coursework in physical chemistry, physical biochemistry, or molecular biophysics (may be taken concurrently).

Course Requirements

Exam (tentatively 25%).

Seminar presentation(s) on research paper(s) (tentatively 50%).

Attendance and participation (tentatively 25%).

Students enrolled in the course will be subject to the Rutgers University Academic Integrity Policy (http://academicintegrity.rutgers.edu/files/documents/AI_Policy_2013.pdf).

Course Schedule

session 1, 9/2: no class (instructor overseas)

session 2, 9/4: no class (instructor overseas)

session 3, 9/9: transcription and transcriptional regulation: overview

session 4, 9/11: transcription: RNA polymerase and initiation factors

session 5, 9/16: transcription: promoters

session 6, 9/18: transcription: transcription initiation, part 1, from R to RPo

session 7, 9/23: transcription: transcription initiation, part 2, from RPo to RDe

session 8, 9/25: transcription: transcription elongation, part 1, mechanism of elongation

session 9, 9/30: transcription: transcription elongation, part 2, editing, pausing, arrest

session 10, 10/2: transcription: transcription termination

session 11, 10/7: transcription: small-molecule inhibitors of transcription

session 12, 10/9: transcriptional regulation: lactose promoter of Escherichia coli

session 13, 10/14: transcriptional regulation: lysis/lysogeny decision of bacteriophage lambda

session 14, 10/16: case study 1: structural organization of RPo: chemical crosslinking

session 15, 10/21: case study 2: structural organization of RPo: FRET

session 16, 10/23: case study 3: structural organization of RPo: x-ray crystallography

session 17, 10/28: case study 4: RNA polymerase clamp conformation: single-molecule FRET

session 18, 10/30: case study 5: mechanism of initial transcription: single-molecule FRET

session 19, 11/4: case study 6: mechanism of initial transcription: magnetic tweezers

session 20, 11/6: case study 7: initiation-factor release: FRET

session 21, 11/11: case study 8: mechanism of elongation: optical tweezers

session 22, 11/13: case study 9: mechanisms of pausing: optical tweezers

session 23, 11/18: case study 10: mechanisms of termination: biochemistry, optical tweezers

session 24, 11/20: case study 11: switch-region inhibitors: biochemistry, crystallography, and med-chem

session 25, 12/2: case study 12: active-center inhibitors: biochemistry, crystallography, and med-chem

session 26, 12/4: case study 13: transcription activation at *lac*, CAP-DNA interaction

session 27, 12/9: case study 13: transcription activation at *lac*, CAP-RNA polymerase interaction

session 28, 12/16: exam