<table>
<thead>
<tr>
<th>CLASS</th>
<th>DATE</th>
<th>READING</th>
<th>END OF CHAPTER PROB</th>
<th>MT = Major Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Review</td>
<td></td>
<td></td>
<td>In Classes 9, 14, 19, 27</td>
</tr>
<tr>
<td>1</td>
<td>T 9/1 L/R</td>
<td>Quantum 1.1-.2; 1.4-.6</td>
<td>1. 5,6,9,19,20,24,26,29,32,33,39,43</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Th 9/3</td>
<td>World 1.7, 1.3, 2.1</td>
<td>1. 13,15-17,25,47-49,54,62,63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T 9/8</td>
<td>Monday schedule</td>
<td>Notify us of any quiz/exam conflict and disability by 9/11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Th 9/10</td>
<td>Atoms: 2.2 – 2.4</td>
<td>2. 5-9,11,12,17-23,31,41 (q. numbers, orbitals)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T 9/15</td>
<td>Quantum 2.5 – 2.7</td>
<td>2. 36-40,43,45,47,50,51,55,56,86 (aufbau)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Th 9/17</td>
<td>Mechanics in Action 2.8 – 2.14</td>
<td>2. 57,59-61,63,64,72,81,84 (size, ionization energy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. 67,68,70,71,73-78 (electron affinity, trends)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T 9/22</td>
<td>Chemical Bonds 3.1 – 3.5</td>
<td>3. 1,3,4,10,13,20,24-26,29-32</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Th 9/24</td>
<td>Bonds 3.6 – 3.8</td>
<td>3. 33-36,39,40,43-46,49,50,53,54,94,97,111</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T 9/29</td>
<td>3.9 – 3.13</td>
<td>3. 55-60,63,65,66,71-74,77,81,84</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Th 10/1</td>
<td>3.14 – 3.16</td>
<td>3. 85,86,88,90,91,92,115,124a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RotVib Spect Box 3.2(p97)</td>
<td></td>
<td>1.55 (p 28), MT 1.1-3 (pp 105-6) & Sakai Class 9 HW</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>T 10/6</td>
<td>Brief Introduction Fundamentals A, B, C</td>
<td>A: Odd prob</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Th 10/8</td>
<td>Fundamentals D, E, F</td>
<td>B: Odd prob</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T 10/13</td>
<td>Molecular Interactions 4.1 – 4.2</td>
<td>C: Odd Prob</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Th 10/15</td>
<td>Molecular Interactions 4.3 – 4.4</td>
<td>D: Odd prob</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>T 10/20</td>
<td>Shape 4.5 – 4.7</td>
<td>E: Odd prob</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Th 10/22</td>
<td>Molecular Interactions 4.8 – 4.12</td>
<td>F: Odd prob</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T 10/27</td>
<td>Molecular Interactions 5.1 – 5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Th 10/29</td>
<td>Molecular Interactions 5.5 – 5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>T 11/3</td>
<td>Molecular Interactions 5.9 – 5.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Th 11/5</td>
<td>Molecular Interactions 5.12 – 5.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>T 11/10</td>
<td>Molecular Interactions 6.1 – 6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Th 11/12</td>
<td>Molecular Interactions 6.7 – 6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>T 11/17</td>
<td>Molecular Interactions 6.1 – 6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Th 11/19</td>
<td>Molecular Interactions 8.1 – 8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>T 11/24</td>
<td>Molecular Interactions 8.13 – 8.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>T 12/1</td>
<td>Molecular Interactions 8.17 – 8.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Th 12/3</td>
<td>Molecular Interactions 8.19 – 8.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>T 12/8</td>
<td>Molecular Interactions 19.1 – 19.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Th 12/10</td>
<td>Molecular Interactions 19.5 – 19.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Th 12/17</td>
<td>Molecular Interactions 19.7 – 19.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Textbook: CHEMICAL PRINCIPLES THE QUEST FOR INSIGHT, ATKINS ET AL, 6th Ed

<table>
<thead>
<tr>
<th>FUNDAMENTALS (F1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Matter of Energy</td>
</tr>
<tr>
<td>B Elements and Atoms</td>
</tr>
<tr>
<td>C Compounds</td>
</tr>
<tr>
<td>D The Nomenclature of Compounds</td>
</tr>
<tr>
<td>E Moles and Molar Masses</td>
</tr>
<tr>
<td>F Determination of Chemical Formulas</td>
</tr>
</tbody>
</table>

Chapter 1 THE Quantum World

1.1 The Nuclear Model of the Atom
1.2 The Characteristics of Electromagnetic Radiatio
1.3 Atomic Spectra
1.4 Radiation, Quanta, and Photons
1.5 The Wave-Particle Duality of Matter
1.6 The Uncertainty Principle
1.7 Wavefunctions and Energy Levels

Chapter 2 Quantum Mechanics in Action: Atoms

2.1 The Principal Quantum Number
2.2 Atomic Orbitals
2.3 Electron Spin
2.4 The Electronic Structure of Hydrogen
2.5 Orbital Energies
2.6 The Building-Up Principle
2.7 Electronic Structure and the Periodic Table
2.8 Atomic Radius
2.9 Ionic Radius
2.10 Ionization Energy
2.11 Electron Affinity
2.12 The Inert-Pair Effect
2.13 Diagonal Relationships
2.14 The General Properties of the Elements

Chapter 3 Chemical Bonds, Box 3.2 Bond Length, Major Technique 1 IR Spectroscopy

3.1 The Ions that Elements Form
3.2 Lewis Symbols
3.3 The Energetics of Ionic Bond Formation
3.4 Interactions between Ions
3.5 Lewis Structures
3.6 Lewis Structures of Polyatomic Species
3.7 Resonance
3.8 Formal Charge
3.9 Radicals and Biradicals
3.10 Expanded Valence Shells
3.11 The Unusual Structures of Some Group 13 Compounds
3.12 Correcting the Covalent Model: Electronegativity
3.13 Correcting for the Ionic Model: Polarizability
3.14 Bond Strengths
3.15 Variation in Bond Strength
3.16 Bond Lengths
Box 3.2 (p 97) How do we Know… The Length of a Chemical Bond
Major Technique 1: Infrared Spectroscopy (pp 105-6)

Chapter 4 Molecular Shape and Structure, Major Technique 2 UV-Vis Spectroscopy (p 146)

4.1 The Basic VSEPR Model
4.2 Molecules with Lone Pairs
4.3 Polar Molecules
4.4 Sigma and Pi Bonds
4.5 Electron Promotion and the Hybridization of Orbitals
4.6 Other Common Types of Hybridization
4.7 Characteristics of Multiple Bonds
4.8 The Limitations of Lewis’s Theory
4.9 Molecular Orbitals
4.10 Electron Configurations of Diatomic Molecules
4.11 Bonding in Heteronuclear Diatomic Molecules
4.12 Orbitals in Polyatomic Molecules
Major Technique 2 UV-Vis Spectroscopy (p 146)
Chapter 5 The Properties of Gases (p 149)

5.1 Observing Gases
5.2 Pressure
5.3 Alternative Units of Pressure
5.4 The Experimental Observations
5.5 Applications of the Ideal Gas Law
5.6 Gas Density
5.7 The Stoichiometry of Reacting Gases
5.8 Mixtures of Gases
5.9 Diffusion and Effusion
5.10 The Kinetic Model of Gases
5.11 The Maxwell Distribution of Speeds
5.12 Deviations from Ideality
5.13 The Liquefaction of Gases
5.14 Equations of State of Real Gases

Chapter 6 Liquids and Solids Major Technique 3 X-Ray Diffraction (p 223)

6.1 The Origin of Intermolecular Forces
6.2 Ion-Dipole Forces
6.3 Dipole-Dipole Forces
6.4 London Forces
6.5 Hydrogen Bonding
6.6 Repulsions
6.7 Order in Liquids
6.8 Viscosity and Surface Tension
6.9 Classification of Solids
6.10 Molecular Solids
6.11 Network Solids
6.12 Metallic Solids
6.13 Unit Cells
6.14 Ionic Structures
6.15 Liquid Crystals
6.16 Ionic Liquids

Chapter 8 Thermodynamics The First Law (p 259)

8.1 Systems
8.2 Work and Energy
8.3 Expansion Work
8.4 Heat
8.5 The Measurement of Heat
8.6 The First Law
8.7 A Molecular Interlude: The Origin of Internal Energy
8.8 Heat Transfers at Constant Pressure
8.9 Heat Capacities at Constant Volume and Constant Pressure
8.10 A Molecular Interlude: The Origin of the Heat Capacities of Gases
8.11 The Enthalpy of Physical Change
8.12 Heating Cures
8.13 Reactions Enthalpies
8.14 The Relation between ΔH and ΔU
8.15 Standard Reactions Enthalpies
8.16 Combining Reactions Enthalpies: Hess’s Law
8.17 Standard Enthalpies of Formation
8.18 The Born-Haber Cycle
8.19 Bond Enthalpies

Chapter 19 Organic Chemistry 1: The Hydrocarbons(p797) Major Technique Mass Spectrometry (p 821)

19.1 Types of Aliphatic Hydrocarbons
19.2 Isomers
19.3 Properties of Alkanes
19.4 Alkane Substitution Reactions
19.5 Properties of Alkanes
19.6 Electrophilic Addition
19.7 Nomenclature of Arenes
19.8 Electrophilic Substitution
19.9 Gasoline
19.10 Coal

Major Technique 6 Mass Spectrometry (p 821)
Exams and Quizzes Section H2

EXAM I: Thursday October 8 ⇒ 10:20-11:45 AM SEC 209
EXAM II: Thursday November 12 ⇒ 10:20-11:45 AM SEC 209
FINAL EXAM: Thursday December 17 ⇒ 12:00-3:00 PM (Location TBA)

RECITATION QUIZZES: Six, but only Five Count (Highest Scores Retained)

Materials (Text - W.H. Freeman and Co. – Sixth Edition 2013)

1) “Chemical Principles: The Quest for Insight” by Peter Atkins, Loretta Jones, & Leroy Laverman
 - Amazon: 169/75 or ebook: ~71 [Text Web Site]
 - RU Bookstore: 198.95 new/145.00 used ---- Looseleaf 128.00 ---- e-book rental 89.99

2) Scientific Calculator (Required for Quizzes and Exams)
 - “Simple” Calculator (~$15)

3) “Student Study Guide” by John Krenos and Joseph Potenza & “Student Solutions Manual” by
 Laurence Lavelle, Yinfa Ma, and Carl Hoeger ($48/$38 Amazon)

* 1 & 3 Required Items (Text, Study Guide & Solutions Manual on Reserve at the Math and Science Learning Center (MSLC) Busch Campus ARC 3rd floor

Course Prerequisite High School Chemistry, Math Ability

Course Corequisite Calculus I [Chem 171 with Chem 163 or 164]

Basis for Course Grade

<table>
<thead>
<tr>
<th>Exam I</th>
<th>80 min</th>
<th>100 pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam II</td>
<td>80 min</td>
<td>100 pts</td>
</tr>
<tr>
<td>Rec Quizzes</td>
<td>5 × 20 pts</td>
<td>100 pts</td>
</tr>
<tr>
<td>Homework</td>
<td></td>
<td>46 pts</td>
</tr>
<tr>
<td>Final Exam</td>
<td>180 min</td>
<td>200 pts</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>546 pts</td>
</tr>
</tbody>
</table>

(A maximum of 10 points for any additional bonus quizzes given in lecture)

Recitation Quiz Schedule Section H2

<table>
<thead>
<tr>
<th>Date</th>
<th>Recitation Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>T9/22</td>
<td>Quiz I</td>
</tr>
<tr>
<td>T9/29</td>
<td>Quiz II</td>
</tr>
<tr>
<td>T10/20</td>
<td>Quiz III</td>
</tr>
<tr>
<td>T11/3</td>
<td>Quiz IV</td>
</tr>
<tr>
<td>T11/17</td>
<td>Quiz V</td>
</tr>
<tr>
<td>T11/24</td>
<td>Quiz VI</td>
</tr>
</tbody>
</table>

Lecturer and Recitation Instructor

Dr. Setareh Marvasti, Room 126, Wright-Rieman Labs, Busch Campus,
e-mail: Marvastis@aol.com
Office Hours: TBA and by arrangement

Lecture: Tuesday 12:00 to 1:20 (SEC 117) & Thursday 10:20-11:40 AM (SEC 209)
Recitation Section: Tuesday 1:55 to 2:50 PM (BME 116)

Course Web Site: Sakai
Text Web Site: http://www.macmillanhighered.com/Catalog/product/chemicalprinciples-sixthedition-atkins
The work on recitation quizzes (20 points each) and exams (100 points each during the semester and 200 points for the final exam) is expected to be entirely an individual effort. No makeup recitation quiz will be given. If you take all six quizzes, the lowest score will be dropped. If you miss one quiz with an excused absence, four of the best five will count (scaled to 100). If you miss two quizzes with excused absences, the three of the best four quizzes taken will be scaled to 100 points. The quiz can cover material from the beginning of the semester up to the previous lecture.

Learning Goals Adopted for Chemistry Majors (boldface applies to Chem 163)

Students should demonstrate mastery of a body of knowledge represented by the basic core curriculum at each level. Students at the upper level should be able to integrate and apply a relevant body of basic knowledge to the evaluation of existing scientific studies and to the design of studies to test specific hypotheses. Students should demonstrate an ability to use and apply quantitative methods, especially: interpretation of graphical or tabular data; expression of physical, chemical, or biological process in mathematical form; and solving equations to determine the value of physical, chemical, or biological variables. Students should demonstrate the ability to master key experimental techniques used in the chemical and related physical and life science disciplines. Students should effectively communicate orally and in writing the processes of science and the results of scientific inquiry.

In their coursework, students should demonstrate mastery of the body of knowledge specified by the core curriculum. Students at the upper level should be able to apply what they have learned to problems that require the evaluation of the scientific literature and the design of studies to test hypotheses. Students should demonstrate an ability to use quantitative methods, both analytical and statistical, for modeling and interpreting the behavior of chemical systems. Students should be familiar with the basic experimental methods of organic, inorganic, analytical, and physical chemistry. Students should be able to communicate clearly, both orally and in writing, the methods used in chemical scholarship and research and the results obtained with them.

Successful completion of this course satisfies goals e and f in the Natural Sciences section of the SAS Core Curriculum. Specifically, upon successful completion of this course, a student will be able to (i) understand and apply basic principles in chemistry (Core goal e), and (ii) explain and assess the relationship between assumptions, methods, evidence, arguments and theory, in the analysis of chemistry and chemical systems (Core goal f).

Student achievement of the Core learning goals, e and f, will be assessed through a mixture of written and multiple choice exam questions during both lecture and recitation meetings aimed specifically at each of these learning goals as they related to the general chemistry course material presented.
GRADING & Attendance

Details of Grading

- Attendance will be taken in class. Attendance is optional, but a good attendance record may influence borderline scores positively.

- You will receive **two points** for each homework assignment completed; see the Syllabus for the homework assigned for each of 23 lectures. The total points for homework assignment is 46 points. You can solve the homework problems by hand and scan and upload them to Sakai under Assignments, labeled Class 0, Class 1, Class 2,Class 27. Tuesday Homework will be due by the following Friday 5:00 PM. Thursday Homework will be due by the following Monday 5:00 PM. The assigned problems in the Fundamentals sections are meant for review of high school chemistry, they should be uploaded also but will not be graded. It may be used for borderline cases. Please use your own work; do not copy any other student’s homework, and do not copy from a solutions manual any violation will be considered a violation of academic integrity.

- **Grade lines for scores on exams and recitation quizzes will be determined based on class performance.** These lines, however, will be no higher than 90% for an A, 80% for a B, and 70% for a C. At the end of the semester, all numerical scores (exams and quizzes) will be totaled and compared to the sum of all grade lines to determine your course grade (A, B+, B, C+, C, D, or F). The work on recitation quizzes (20 points each) and an exam (100 points each during the semester and 200 points for the final exam) **is expected to be entirely an individual effort.** No makeup recitation quiz will be given. If you take all six quizzes, the lowest score will be dropped. If you miss one quiz with an excused absence, the other five will count. If you miss two quizzes with excused absences, the four quizzes taken will be scaled to 100 points.

- A “simple” calculator is required for use on all exams, preferably one with no text or equation memory. Useful constants, equations, and relationships are given on exam Information Pages.

- You can receive a **maximum** of 10 additional points for lecture bonus quizzes (usually, 2 points each). **There are no make-up bonus quizzes.** During these special quizzes, students are encouraged to discuss possible answers with their classmates. These points will be applied only for students near a borderline.

Any student who fails the final exam may fail the course regardless of the total number of points.

There is no minimum passing score on the final exam, however anyone who scores low on the final may end up with a grade lower than his or her points might otherwise have earned. For example, a student in the C+ point range and low on the final might be given a grade of C or D (or lower). Further, we might assign a failing grade to anyone who scores very low on the final, regardless of the grade indicated by the points, depending on the circumstances.

The exams are not curved individually. At the end of the semester, a grade will be assigned based on the total score. However, a tentative and rough letter grade solely based on the exam may be given during the semester as a very rough guide as how you performed on that exam.

We will not discuss the grades and performance of other students with you.

Please understand we can only communicate with you about your issues. We cannot discuss your grades and related matters with others or with your parents.

EXAMS (Scientific Calculators Only)

There will be two 80-minute exams plus a 180-minute final exam.

You must take the exam at your assigned location. Locations for all exams will generally be announced in Lecture. You need to attend lecture and take notes to receive any changes to the syllabus. Do not rely on Sakai only. A periodic table and a formula sheet will be provided.
EXAM (AND QUIZ) RULES AND REQUEST FOR CONFLICT EXAM

(Provide documentation by the end of the second week of the course if you have a conflict)

1. For all examinations, be at your assigned location **15 minutes before** the starting time. Bring #2 pencils or pens, erasers, **and a non-graphing, non-programmable, calculator (no memory)** with spare batteries and official photo ID. Some students bring an extra scientific calculator as a back-up. Calculators may **not** be shared, and covers must be removed from all calculators. Earphones and headphones may not be used, and hats should not be worn. Cell phones cannot be used as calculators and will be considered as a violation of the academic integrity.

2. Cell phones, ipods, and other electronic devices are **not** permitted, not even for use as a calculator or a watch. If you need to know the time, you can wear a watch.

3. You should not bring books, notes, backpacks, cell phones, ipods, ipads, pagers, electronic devices, laptops or any other unnecessary items into the exam room. If you do, they must be placed out of sight during the exam: at the front, back, or sides of the exam room. We are not responsible for lost or stolen items. **When you leave the room, check that you have not forgotten anything**, such as a photo ID card, textbook, electronic device or notebook.

4. You may **NOT** use scratch paper; all work will be done in the question booklet. There is plenty of room, especially if you use both sides of the paper. If you need additional scratch paper, you can let us know.

Exams take precedence over most university events; however, situations that may constitute an official exam conflict follow: 1. Student is registered for another course that meets at the same time as the scheduled final exam. 2. Another exam is scheduled for the student at the same time. 3. Athletic practice is required by a coach. 4. Religious observance. 5. Verifiable medical reasons.

If you think that you have a conflict with the final exam, be sure to read carefully about this matter in the schedule of classes.

To request permission to take any conflict exam, please e mail your lecturer at Marvastis@aol.com by the end of the second week of the course. Be sure to include the following documentation: 1. **A copy of your course schedule** as sent to you by the university. 2. Supporting documents to verify that a conflict exists: a note signed by a course professor or by a coach; for religious observances, attach a note verified by your Dean. All documents have to be on original letterhead with original signatures and contact telephone number for verification purposes.

If you miss an exam for unforeseen and verifiable medical reasons, you must notify the course lecturer (by e-mail) **when you are capable** with an explanation. Always follow the instructions of your health care professionals. Later, you must provide the lecturer with a written explanation and supporting documents. We reserve the right to verify all documentation. Make sure the documentation contains the proper letterhead and contact information. There are no make-up exams for the common hour exams. For students who are excused from Exam I or from Exam II, the total points will be adjusted in a way to account for the missing exam.
ACADEMIC INTEGRITY
All University polices on academic integrity will be strictly enforced. Any involvement with cheating, the fabrication or invention of information used in an academic exercise, or facilitating academic dishonesty of others will result in serious consequences ranging from reprimand to expulsion. Bringing information into an exam, whether stored electronically or on paper, shall be considered cheating. Having a cell phone or pager at hand during a test shall be considered *prima facie* evidence of cheating. All electronic devices, other than a scientific calculator must be completely turned off (Vibrate and standby modes are not accepted) and out of sight during testing. No gadgets (cell phones or other devices) are allowed with the ability to communicate with others during the exam (text or any other form). Cell phones and gadgets cannot be carried on you or in your pockets during the exam, as such texting is not allowed during the exam. Use of a calculator with the ability to communicate with other calculators, that are programmable, that have any permanent alphanumeric memories ("graphing" calculators) is expressly forbidden. Use of such calculators may result in a score of zero on the quiz or exam during which it was discovered and the involvement of the Office of Student Conduct and appropriate personnel. Signing for another student (for example on an attendance sheet) is considered to be a violation of academic integrity. Homework should be your individual work.

The University’s policy on Academic integrity can be found at:

http://academicintegrity.rutgers.edu/policy-on-academic-integrity

We cannot see everything that occurs in the course. If you observe any violations of the rules, you owe it to yourself and your fellow students to report it. If you do not report, you are also hurting your own grade. This will affect the overall curve. You can report it to the proctor during the exam if you would like to remain anonymous. We will treat these reports in the strictest confidence.

STUDENTS WITH DISABILITIES (Provide letter by the end of the second week of the course)
Please contact the office of Disability Services at https://ods.rutgers.edu/ or tel: 848-445-6800 if you need a permanent or a temporary accommodation.

If you have a disability, you must contact the lecturer right away to make the necessary arrangements to support a successful learning experience. Also, you must arrange for the lecturer to receive a letter from your College’s Disability Concerns Coordinator verifying that you have a disability by the end of the second week of the course.

CHAIN OF COMMAND
In general, routine questions regarding course material, homework problems, quizzes, quiz absences, exam scores, etc. should be directed to your lecturer. Please do not call the chemistry department.

WEATHER AND OTHER EMERGENCIES
Check the Rutgers website for any information concerning campus operations due to weather conditions or other emergencies. The “Campus Operating Status” can be found at

or by going to the main New Brunswick webpage at

http://nb.rutgers.edu

Changes in schedule and other adjustments will be announced on Sakai or by email. Students are still responsible for all the material even if a particular lab is cancelled due to weather emergency.

When announcements are made, campus status information will also be available through:
For more information about the university's policy concerning adverse weather conditions, please visit http://emergency.rutgers.edu/weather.shtml. Campus status information will also be available through these media stations and their websites:

- News-12 New Jersey
- New Jersey 101.5 (FM)
- WCTC Radio (1450 AM)
- WCBS Radio (880 AM)
- The Breeze Radio (107.1 and 99.7 FM)
- WRNJ Radio (1510 AM, 104.7 and 92.7 FM)
- WRSU Radio (88.7 FM)