• Kate Waldie
  • Assistant Professor
  • Research Synopsis: Coupling inorganic chemistry & electrochemistry for the design and study of organometallic catalysts and functional materials for energy-related applications
  • Phone: (848) 445-2622

 

In the Waldie Group, we are developing novel transition-metal complexes and supramolecular structures with targeted reactivity for catalysis (e.g. electro-reduction of water and carbon dioxide, electro-oxidation of liquid fuels) and materials applications (e.g. opto-electronic devices, heterogeneous catalysis). We apply concepts from synthetic inorganic and organometallic chemistry coupled with electrochemistry and spectroscopic techniques to prepare, understand, and optimize our systems and their reactivity.

 

Links

Waldie Research Group

 

Selected Publications

Controlled-Potential Electrolysis for Evaluating Molecular Electrocatalysts. Katipamula, S.; White, N. M.; Waldie, K. M. Chem Catalysis 20233, 100561. 

Design of a Minimal di-Nickel Hydrogenase Peptide. Mancini, J. A.; Pike, D. H.; Poudel, S.; Timm, J.; Tyryshkin, A. M.; Siess, J.; Molinaro, P.; McCann, J. J.; Waldie, K. M.; Koder, R. L.; Falkowski, P. G.; Nanda, V. Sci. Adv. 20239, eabq1990. 

Recent Progress in the Development of Molecular Electrocatalysts for Formate Oxidation. Waldie, K. M.; Katipamula, S. Catalysis Research 20222, 15.

Insights into Formate Oxidation by a Series of Cobalt Piano-Stool Complexes Supported by Bis(phosphino)amine Ligands. Cook, A. W.; Emge, T. J.; Waldie, K. M. Inorg. Chem. 202160, 7372-7380. 

Approaches to Controlling Homogeneous Electrochemical Reduction of Carbon Dioxide. Barrett, J. A.; Brunner, F. M.; Cheung, P. L.; Kubiak, C. P.; Lee, G. L.; Miller, C. J.; Waldie, K. M.; Zhanaidarova, A. In Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis; Robert, M.; Costentin, C.; Daasbjerg, K., Eds.; Energy and Environment Series No. 28; Royal Society of Chemistry, 2021; pp 1-66. 

Molecular Electrocatalysts for Alcohol Oxidation: Insights and Challenges for Catalyst Design. Cook, A. W.; Waldie, K. M. ACS Appl. Energy Mater.20203, 38-46.

Protonation of a Cobalt Phenylazopyridine Complex at the Ligand Yields a Proton, Hydride, and Hydrogen Atom Transfer Reagent. McLoughlin, E.+; Waldie, K. M.+; Ramakrishnan, S.; Waymouth, R. M. J. Am. Chem. Soc.2018140, 13233-13241.

Utilization of Thermodynamic Scaling Relationships in Hydricity to Develop Nickel Hydrogen Evolution Reaction Electrocatalysts with Weak Acids and Low Overpotentials. Ostericher, A. L.; Waldie, K. M.; Kubiak, C. P. ACS Catal.20188, 9596-9603.

Transition Metal Hydride Catalysts for Sustainable Interconversion of CO2 and Formate: Thermodynamic and Mechanistic Considerations. Waldie, K.M.; Brunner, F. M.; Kubiak, C. P. ACS Sustainable Chem. Eng.20186, 6841-6848.

Hydricity of Transition Metal Hydrides: Thermodynamic Considerations for CO2 Reduction. Waldie, K. M.+; Ostericher, A. L.+; Reineke, M. H.; Sasayama, A. F.; Kubiak, C. P. ACS Catal.20188, 1313-1324.

Cyclopentadienyl Cobalt Complexes as Precatalysts for Electrocatalytic Hydrogen Evolution. Waldie, K. M.; Kim, S.-K.; Ingram, A. J.; Waymouth, R. M. Eur. J. Inorg. Chem.2017, 2755-2761.

Multielectron Transfer at Cobalt: Influence of the Phenylazopyridine Ligand. Waldie, K. M.+; Ramakrishnan, S.+; Kim, S.-K.; Maclaren, J. K.; Chidsey, C. E. D.; Waymouth, R.M. J. Am. Chem. Soc.2017139, 4540-4550.

Electrocatalytic Alcohol Oxidation with Ruthenium Transfer Hydrogenation Catalysts. Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E. D.; Waymouth, R. M. J. Am. Chem. Soc.2017139, 738-748.

Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes. Ramakrishnan, S.+; Waldie, K. M.+; Warnke, I.; De Crisci, A. G.; Batista, V. S.; Waymouth, R. M.; Chidsey, C. E. D. Inorg. Chem.201655, 1623-1632.

 

People Page